Journal of Biological Chemistry 2015-06-05

Aryl Hydrocarbon Receptor Interacting Protein Targets IRF7 to Suppress Antiviral Signaling and the Induction of Type I Interferon.

Qinjie Zhou, Alfonso Lavorgna, Melissa Bowman, John Hiscott, Edward W Harhaj

Index: J. Biol. Chem. 290 , 14729-39, (2015)

Full Text: HTML

Abstract

The transcription factor IRF7 (interferon regulatory factor 7) is a key regulator of type I interferon and plays essential roles in restricting virus infection and spread. IRF7 activation is tightly regulated to prevent excessive inflammation and autoimmunity; however, how IRF7 is suppressed by negative regulators remains poorly understood. Here, we have identified AIP (aryl hydrocarbon receptor interacting protein) as a new binding partner of IRF7. The interaction between AIP and IRF7 is enhanced upon virus infection, and AIP potently inhibits IRF7-induced type I IFN (IFNα/β) production. Overexpression of AIP blocks virus-induced activation of IFN, whereas knockdown of AIP by siRNA potentiates virally activated IFN production. Consistently, AIP-deficient murine embryonic fibroblasts are highly resistant to virus infection because of increased production of IFNα/β. AIP inhibits IRF7 function by antagonizing the nuclear localization of IRF7. Together, our study identifies AIP as a novel inhibitor of IRF7 and a negative regulator of innate antiviral signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.


Related Compounds

Related Articles:

Epigenetic reprogramming of the type III interferon response potentiates antiviral activity and suppresses tumor growth.

2014-01-01

[PLoS Biol. 12(1) , e1001758, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

2014-01-01

[PLoS ONE 9(12) , e116152, (2014)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy.

2015-05-01

[Biomaterials 51 , 1-11, (2015)]

More Articles...