Neurobiology of Aging 2014-10-01

Raloxifene activates G protein-coupled estrogen receptor 1/Akt signaling to protect dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice.

Mélanie Bourque, Marc Morissette, Thérèse Di Paolo

Index: Neurobiol. Aging 35(10) , 2347-56, (2014)

Full Text: HTML

Abstract

Raloxifene, used in the clinic, is reported to protect brain dopaminergic neurons in mice. Raloxifene was shown to mediate an effect through the G protein-coupled estrogen receptor 1 (GPER1). We investigated if raloxifene neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated male mice is mediated through GPER1 by using its antagonist G15. Striatal concentrations of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid to dopamine ratio as well as dopamine transporter and vesicular monoamine transporter 2 showed that raloxifene neuroprotection of dopaminergic neurons was blocked by G15. Protection by raloxifene was accompanied by activation of striatal Akt signaling (but not ERK1/2 signaling) and increased Bcl-2 and brain-derived neurotrophic factor levels; these effects were abolished by coadministration with G15. The effect of raloxifene was not mediated through increased levels of 17β-estradiol. MPTP mice had decreased plasma testosterone, dihydrotestosterone, and 3β-diol levels; this was prevented in raloxifene-treated MPTP mice. Our results suggest that raloxifene acted through GPER1 to mediate Akt activation, increase Bcl-2 and brain-derived neurotrophic factor levels, and protection of dopaminergic neurons and plasma androgens. Copyright © 2014 Elsevier Inc. All rights reserved.


Related Compounds

Related Articles:

Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.

2015-05-01

[J. Virol. 89(10) , 5714-23, (2015)]

Intrinsic mechanisms underlying the neurotrophic activity of adipose derived stem cells.

2015-02-01

[Exp. Cell Res. 331(1) , 142-51, (2015)]

Rad23 interaction with the proteasome is regulated by phosphorylation of its ubiquitin-like (UbL) domain.

2014-12-12

[J. Mol. Biol. 426(24) , 4049-60, (2014)]

Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

2014-01-01

[PLoS ONE 9(10) , e111329, (2014)]

The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence.

2015-01-01

[J. Biol. Inorg. Chem. 20(1) , 61-75, (2015)]

More Articles...