Journal of Organic Chemistry 2008-04-04

Synthesis and analysis of oligonucleotides containing abasic site analogues.

Haidong Huang, Marc M Greenberg

Index: J. Org. Chem. 73(7) , 2695-703, (2008)

Full Text: HTML

Abstract

DNA damage results in the formation of abasic sites from the formal hydrolysis of the glycosidic bond (AP) and several oxidized abasic lesions. Previous studies on AP sites revealed that DNA polymerases preferentially incorporated dA opposite them in approximately 80% of the replication events in Escherichia coli. These results were consistent with the hypothesis that the AP sites are noninstructive lesions due to the absence of a Watson-Crick base whose bypass adheres to the "A-rule." Recent replication studies of the oxidized abasic lesion, 2-deoxyribonolactone (L), revealed that DNA polymerase(s) does not apply the A-rule when bypassing it and incorporates large amounts of dG opposite L. These studies suggested that abasic sites such as L do direct polymerases to selectively incorporate nucleotides opposite them. However, it was not possible to determine the structural basis for this molecular recognition from these experiments. A group of oligonucleotides containing analogues of the AP and L lesions were synthesized and characterized as probes to gain insight into the structural basis for the distinct effect of 2-deoxyribonolactone on replication. These molecules will be useful tools for studying replication in cells and in vitro.


Related Compounds

Related Articles:

Reduced repair capacity of a DNA clustered damage site comprised of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2-deoxyribonolactone results in an increased mutagenic potential of these lesions.

2014-04-01

[Mutat. Res. Fundam. Mol. Mech. Mutagen. 762 , 32-9, (2014)]

Analysis of base excision DNA repair of the oxidative lesion 2-deoxyribonolactone and the formation of DNA-protein cross-links.

2006-01-01

[Meth. Enzymol. 408 , 48-64, (2006)]

Histone-catalyzed cleavage of nucleosomal DNA containing 2-deoxyribonolactone.

2012-05-16

[J. Am. Chem. Soc. 134(19) , 8090-3, (2012)]

Mutagenic effects of abasic and oxidized abasic lesions in Saccharomyces cerevisiae.

2005-01-01

[Nucleic Acids Res. 33(19) , 6196-202, (2005)]

Use of fluorescence sensors to determine that 2-deoxyribonolactone is the major alkali-labile deoxyribose lesion produced in oxidatively damaged DNA.

2007-01-01

[Angew. Chem. Int. Ed. Engl. 46(4) , 561-4, (2007)]

More Articles...