Anesthesia & Analgesia 2005-02-01

Involvement of adenosine triphosphate-sensitive potassium channels in the response of membrane potential to hyperosmolality in cultured human aorta endothelial cells.

Mikiyo Yamaguchi, Yoshinobu Tomiyama, Toshiko Katayama, Hiroshi Kitahata, Shuzo Oshita

Index: Anesth. Analg. 100(2) , 419-26, (2005)

Full Text: HTML

Abstract

The membrane potential of endothelial cells is an important determinant of endothelial functions, including regulation of vascular tone. We investigated whether adenosine triphosphate-sensitive potassium (K(ATP)) channels were involved in the response of membrane potential to hyperosmolality in cultured human aorta endothelial cells. The voltage-sensitive fluorescent dye, bis-(1,3-diethylthiobarbiturate)trimethine oxonol, was used to assess relative changes in membrane potential semiquantitatively. To investigate the effect of mannitol-, sucrose-, and NaCl-induced hyperosmolality on membrane potential, cells were continuously perfused with Earle's balanced salt solution (285 mOsm/kg H(2)O) containing 200 nM bis-(1,3-diethylthiobarbiturate)trimethine oxonol and exposed to 315 and 345 mOsm/kg H(2)O hyperosmotic medium sequentially in the presence and absence of 1 muM glibenclamide, a well-known K(ATP) channel blocker. Hyperosmotic mannitol significantly induced hyperpolarization of the endothelial cells, which was prevented by 1 microM glibenclamide (n = 6). Estimated changes of membrane potential at 315 and 345 mOsm/kg H(2)O were 13 +/- 8 and 21 +/- 8 mV, respectively. Hypertonic sucrose induced similar changes. However, although hypertonic saline also significantly induced hyperpolarization of the endothelial cells (n = 6), the hyperpolarization was not prevented by 1 muM glibenclamide. In conclusion, K(ATP) channels may participate in hyperosmotic mannitol- and sucrose-induced hyperpolarization, but not in hypertonic saline-induced hyperpolarization in cultured human aorta endothelial cells.


Related Compounds

Related Articles:

Membrane potential changes visualized in complete growth media through confocal laser scanning microscopy of bis-oxonol-loaded cells.

1997-03-15

[Exp. Cell Res. 231(2) , 260-8, (1997)]

Peroxynitrite affects Ca2+ influx through voltage-dependent calcium channels.

2001-01-01

[J. Neurochem. 76(2) , 341-50, (2001)]

Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy.

2009-04-29

[Nanotechnology 20(17) , 175104, (2009)]

A membrane potential-sensitive dye for vascular smooth muscle cells assays.

2003-01-31

[Biochem. Biophys. Res. Commun. 301(1) , 113-8, (2003)]

Measurement of membrane potential of endothelial cells in single perfused microvessels.

1995-09-01

[Microvasc. Res. 50(2) , 183-98, (1995)]

More Articles...