British Journal of Cancer 2009-11-03

Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells.

C Martínez-Campa, A González, M D Mediavilla, C Alonso-González, V Alvarez-García, E J Sánchez-Barceló, S Cos

Index: Br. J. Cancer 101 , 1613-9, (2009)

Full Text: HTML

Abstract

Melatonin reduces the development of breast cancer interfering with oestrogen-signalling pathways, and also inhibits aromatase activity and expression. Our objective was to study the promoters through which melatonin modifies aromatase expression, evaluate the ability of melatonin to regulate cyclooxygenases and assess whether the effects of melatonin are related to its effects on intracellular cAMP, in MCF-7 cells.Total aromatase mRNA, aromatase mRNA promoter regions and cyclooxygenases mRNA expression were determined by real-time RT-PCR. PGE(2) and cAMP were measured by kits.Melatonin downregulated the gene expression of the two major specific aromatase promoter regions, pII and pI.3, and also that of the aromatase promoter region pI.4. Melatonin 1 nM was able to counteract the stimulatory effect of tetradecanoyl phorbol acetate on PGE(2) production and inhibit COX-2 and COX-1 mRNA expression. Melatonin 1 nM elicited a parallel time-dependent decrease in both cyclic AMP formation and aromatase mRNA expression.This study shows that melatonin inhibits aromatase activity and expression by regulating the gene expression of specific aromatase promoter regions. A possible mechanism for these effects would be the regulation by melatonin of intracellular cAMP levels, mediated by an inhibition of cyclooxygenase activity and expression.


Related Compounds

Related Articles:

ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion.

2015-12-01

[Cell Death Differ. 22 , 1970-84, (2015)]

Immunomodulatory effects of Lippia sidoides extract: induction of IL-10 through cAMP and p38 MAPK-dependent mechanisms.

2015-03-01

[J. Med. Food 18(3) , 370-7, (2015)]

Chemical genetics reveals a complex functional ground state of neural stem cells.

2007-05-01

[Nat. Chem. Biol. 3(5) , 268-273, (2007)]

Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.

2009-10-01

[Nat. Chem. Biol. 5 , 765-71, (2009)]

Effects of caffeine on circadian phase, amplitude and period evaluated in cells in vitro and peripheral organs in vivo in PER2::LUCIFERASE mice.

2014-12-01

[Br. J. Pharmacol. 171(24) , 5858-69, (2014)]

More Articles...