Current Alzheimer Research 2015-01-01

Insulin Modulates In Vitro Secretion of Cytokines and Cytotoxins by Human Glial Cells.

Lindsay J Spielman, Manpreet Bahniwal, Jonathan P Little, Douglas G Walker, Andis Klegeris

Index: Curr. Alzheimer Res. 12 , 684-93, (2015)

Full Text: HTML

Abstract

Alzheimer's disease (AD) is the most common form of dementia worldwide. Type 2 diabetes (T2D) has been implicated as a risk factor for AD. Since T2D is a peripheral inflammatory condition, and AD brains exhibit exacerbated neuroinflammation, we hypothesized that inflammatory mechanisms could contribute to the observed link between T2D and AD. Abnormal peripheral and brain insulin concentrations have been reported in both T2D and AD. The neurotrophic role of insulin has been described; however, this hormone can also regulate inflammatory responses in the periphery. Therefore we used in vitro human cell culture systems to elucidate the possible effects of insulin on neuroinflammation. We show that human astrocytes and microglia express both isoforms of the insulin receptor as well as the insulin-like growth factor (IGF)-1 receptor. They also express insulin receptor substrate (IRS)-1 and IRS-2, which are required for propagation of insulin/IGF- 1 signaling. We show that at low nanomolar concentrations, insulin could be pro-inflammatory by upregulating secretion of interleukin (IL)-6 and IL-8 from stimulated human astrocytes and secretion of IL-8 from stimulated human microglia. This effect dissipates at higher insulin concentrations. In contrast, insulin at a broader concentration range (10 pM - 1 μM) reduces the toxicity of stimulated human microglia and THP-1 monocytic cells towards SH-SY5Y neuronal cells. These data show that insulin may regulate the inflammatory status of glial cells by modulating their select functions, which in turn can influence the survival of neurons contributing to the observed link between T2D and AD.


Related Compounds

Related Articles:

The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1627-52, (2015)]

Activation of Tomato Bushy Stunt Virus RNA-Dependent RNA Polymerase by Cellular Heat Shock Protein 70 Is Enhanced by Phospholipids In Vitro.

2015-05-01

[J. Virol. 89(10) , 5714-23, (2015)]

Caveolin-1 deficiency induces a MEK-ERK1/2-Snail-1-dependent epithelial-mesenchymal transition and fibrosis during peritoneal dialysis.

2015-01-01

[EMBO Mol. Med. 7(1) , 102-23, (2015)]

Inducible, tightly regulated and growth condition-independent transcription factor in Saccharomyces cerevisiae.

2014-01-01

[Nucleic Acids Res. 42(17) , e130, (2014)]

Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival.

2015-02-01

[Hum. Mol. Genet. 24(3) , 698-713, (2015)]

More Articles...