Journal of Bacteriology 1983-01-01

Direct homocysteine biosynthesis from O-succinylhomoserine in Escherichia coli: an alternate pathway that bypasses cystathionine.

M Simon, J S Hong

Index: J. Bacteriol. 153(1) , 558-61, (1983)

Full Text: HTML

Abstract

Mutations were found which enable Escherichia coli K-12 to form homocysteine in the absence of cystathionase. The formation of homocysteine in the mutant strains required cystathionine gamma-synthetase, the metB gene product, but bypassed the normal intermediate cystathionine. It is concluded that cystathionine gamma-synthetase catalyzes the formation of homocysteine directly from O-succinylhomoserine and an as-yet-unidentified sulfur donor. The mutation apparently causes the formation of this sulfur donor and has been named metQ. The expression of the metQ gene is under catabolite repression.


Related Compounds

Related Articles:

The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity.

2005-01-01

[Arch. Biochem. Biophys. 433 , 166-175, (2005)]

Cloning and characterization of two Lactobacillus casei genes encoding a cystathionine lyase.

2008-01-01

[Appl. Environ. Microbiol. 74 , 99-106, (2008)]

Enzymatic characterization and inhibitor discovery of a new cystathionine {gamma}-synthase from Helicobacter pylori.

2008-01-01

[J. Biochem. 143 , 59-68, (2008)]

Pathways of assimilative sulfur metabolism in Pseudomonas putida.

1999-09-01

[J. Bacteriol. 181(18) , 5833-7, (1999)]

Cloning and characterization of the CYS3 (CYI1) gene of Saccharomyces cerevisiae.

1992-05-01

[J. Bacteriol. 174(10) , 3339-47, (1992)]

More Articles...