Physical Chemistry Chemical Physics 2015-08-28

An olive-shaped SnO2 nanocrystal-based low concentration H2S gas sensor with high sensitivity and selectivity.

Jun Hu, Guilin Yin, Junchen Chen, Meiying Ge, Jing Lu, Zhi Yang, Dannong He

Index: Phys. Chem. Chem. Phys. 17 , 20537-42, (2015)

Full Text: HTML

Abstract

Olive-shaped SnO2 nanocrystals were synthesized successfully via a facile hydrothermal route, using tin dichloride hydrate, oxalic acid dihydrate and polyvinylpyrrolidone as reaction precursors, and showed great potential in the large-scale preparation of SnO2 nanocrystals. The prepared SnO2 nanocrystals were characterized using XRD, XPS, SEM, TEM and HRTEM, and showed well-defined olive-shaped tetragonal single-crystals with irregular exposed facets. The growth mechanism of the olive-shaped SnO2 nanocrystals was considered after investigating the experimental conditions and reaction time. Due to the abundant active sites on the irregular surfaces, the gas sensing performance of the prepared SnO2 nanocrystals exhibited great gas sensing properties, including high sensitivity, selectivity and stability towards H2S with a very low detection limit (less than 0.5 ppm), revealing their great potential in commercial applications for H2S gas detection.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Gene transfer of high-mobility group box 1 box-A domain in a rat acute liver failure model.

2015-04-01

[J. Surg. Res. 194(2) , 571-80, (2015)]

DNase II-dependent DNA digestion is required for DNA sensing by TLR9.

2015-01-01

[Nat. Commun. 6 , 5853, (2015)]

The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184.

2014-09-01

[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]

Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine.

2014-12-01

[FEBS J. 281(24) , 5498-512, (2014)]

More Articles...