Therapeutic effects of human urocortin-1, -2 and -3 in intracerebral hemorrhage of rats.
Hock-Kean Liew, Li-Chuan Huang, Hui-I Yang, Hsiao-Fen Peng, Kuo-Wei Li, Andy Po-Yi Tsai, Shin-Yuan Chen, Jon-Son Kuo, Cheng-Yoong Pang
Index: Neuropeptides 52 , 89-96, (2015)
Full Text: HTML
Abstract
Urocortin exerts neuroprotective effects in intracerebral hemorrhage (ICH) of rats. For pre-clinical trial, we intended to study the neuroprotective efficacy of human UCN (hUCN)-1, -2 and -3 in treating ICH rats. ICH was induced by infusing bacterial collagenase VII (0.23 U in sterile saline) to the striatum. The hUCN-1, -2, and -3 were administrated (2.5μg/kg, i.p.) at 1h after ICH insult, respectively. Neurological deficits were evaluated by modified Neurological Severity Scores. Brain edema and hematoma expansion was evaluated by coronal T2-WI and DWI magnetic resonance imaging on 1, 3, 6, 24, and 56h after ICH insult. Blood-brain barrier permeability was evaluated by Evans blue assay on day 3 after ICH. Brain lesion volume was evaluated by morphormetric measurement on day 7 after ICH. Our results demonstrated that the hUCN-1 significantly reduced hematoma, blood-brain barrier disruption and neurological deficits on day 3, and brain lesion volume on day 7 after ICH insult. The prediction of secondary structure of the hUCNs clarifies that the percentage of alpha-helix, random coil and extended strand between rat-UCN (rUCN)-1 and hUCN-1 are the same. The structure similarity between human- and rat-UCN-1 may be one of the reasons that both can exert similar therapeutic potential in ICH rats.Copyright © 2015 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
Imaging of a clinically relevant stroke model: glucose hypermetabolism revisited.
2015-03-01
[Stroke 46(3) , 835-42, (2015)]
Suppression of the HSF1-mediated proteotoxic stress response by the metabolic stress sensor AMPK.
2015-02-03
[EMBO J. 34(3) , 275-93, (2015)]
Detailed characterization of a long-term rodent model of critical illness and recovery.
2015-03-01
[Crit. Care Med. 43(3) , e84-96, (2015)]
The chemokine (CCL2-CCR2) signaling axis mediates perineural invasion.
2015-02-01
[Mol. Cancer Res. 13(2) , 380-90, (2015)]
Developmental tightening of cerebellar cortical synaptic influx-release coupling.
2015-02-04
[J. Neurosci. 35(5) , 1858-71, (2015)]