Biology of Sex Differences 2014-01-01

The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging.

Negar M Ghahramani, Tuck C Ngun, Pao-Yang Chen, Yuan Tian, Sangitha Krishnan, Stephanie Muir, Liudmilla Rubbi, Arthur P Arnold, Geert J de Vries, Nancy G Forger, Matteo Pellegrini, Eric Vilain

Index: Biol. Sex. Differ. 5 , 8, (2014)

Full Text: HTML

Abstract

The biological basis for sex differences in brain function and disease susceptibility is poorly understood. Examining the role of gonadal hormones in brain sexual differentiation may provide important information about sex differences in neural health and development. Permanent masculinization of brain structure, function, and disease is induced by testosterone prenatally in males, but the possible mediation of these effects by long-term changes in the epigenome is poorly understood.We investigated the organizational effects of testosterone on the DNA methylome and transcriptome in two sexually dimorphic forebrain regions-the bed nucleus of the stria terminalis/preoptic area and the striatum. To study the contribution of testosterone to both the establishment and persistence of sex differences in DNA methylation, we performed genome-wide surveys in male, female, and female mice given testosterone on the day of birth. Methylation was assessed during the perinatal window for testosterone's organizational effects and in adulthood.The short-term effect of testosterone exposure was relatively modest. However, in adult animals the number of genes whose methylation was altered had increased by 20-fold. Furthermore, we found that in adulthood, methylation at a substantial number of sexually dimorphic CpG sites was masculinized in response to neonatal testosterone exposure. Consistent with this, testosterone's effect on gene expression in the striatum was more apparent in adulthood.Taken together, our data imply that the organizational effects of testosterone on the brain methylome and transcriptome are dramatic and late-emerging. Our findings offer important insights into the long-term molecular effects of early-life hormonal exposure.


Related Compounds

Related Articles:

CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression.

2014-08-30

[Oncotarget 5(16) , 6756-69, (2014)]

Cell-cell adhesions and cell contractility are upregulated upon desmosome disruption.

2014-01-01

[PLoS ONE 9(7) , e101824, (2014)]

Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease.

2013-03-01

[Brain Behav. 3(2) , 75-88, (2013)]

Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS.

2015-02-15

[J. Immunol. 194(4) , 1545-54, (2015)]

Enhanced Retinal Ganglion Cell Survival in Glaucoma by Hypoxic Postconditioning After Disease Onset.

2015-04-01

[Neurotherapeutics 12(2) , 502-14, (2015)]

More Articles...