Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects.
Hong Sik Yoo, Blair U Bradford, Oksana Kosyk, Takeki Uehara, Svitlana Shymonyak, Leonard B Collins, Wanda M Bodnar, Louise M Ball, Avram Gold, Ivan Rusyn
Index: J. Toxicol. Environ. Health A 78(1) , 32-49, (2015)
Full Text: HTML
Abstract
Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal-cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, interspecies and interindividual differences, and the mode of action for kidney carcinogenicity. It was postulated that TCE renal metabolite levels are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in subacute (600 mg/kg/d; 5 d; 7 inbred mouse strains) and subchronic (100 or 400 mg/kg/d; 1, 2, or 4 wk; 2 inbred mouse strains) designs. The quantitative relationship was evaluated between strain-, dose, and time-dependent formation of TCE metabolites from cytochrome P-450-mediated oxidation (trichloroacetic acid [TCA], dichloroacetic acid [DCA], and trichloroethanol) and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In subacute study, interstrain differences in renal TCE metabolite levels were observed. In addition, data showed that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In subchronic study, peroxisome proliferator-marker gene induction and renal toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ but not C57BL/6J mice. Overall, data demonstrated that renal TCE metabolite levels are associated with kidney-specific toxicity and that these effects are strain dependent.
Related Compounds
Related Articles:
BBS4 directly affects proliferation and differentiation of adipocytes.
2014-09-01
[Cell. Mol. Life Sci. 71(17) , 3381-92, (2014)]
2014-09-26
[J. Chromatogr. A. 1361 , 265-76, (2014)]
2014-11-01
[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]
2014-10-01
[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]
2014-01-01
[PLoS ONE 9(10) , e109201, (2014)]