Aerobic biotransformation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10.
Kimiko Fukuoka, Yasuhiro Ozeki, Robert A Kanaly
Index: Biodegradation 26 , 359-73, (2015)
Full Text: HTML
Abstract
3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants.
Related Compounds
Related Articles:
BBS4 directly affects proliferation and differentiation of adipocytes.
2014-09-01
[Cell. Mol. Life Sci. 71(17) , 3381-92, (2014)]
2014-09-26
[J. Chromatogr. A. 1361 , 265-76, (2014)]
2014-11-01
[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]
2014-10-01
[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]
2014-01-01
[PLoS ONE 9(10) , e109201, (2014)]