Biomaterials 2015-09-01

Microstructured dextran hydrogels for burst-free sustained release of PEGylated protein drugs.

Ki Hyun Bae, Fan Lee, Keming Xu, Choong Tat Keng, Sue Yee Tan, Yee Joo Tan, Qingfeng Chen, Motoichi Kurisawa

Index: Biomaterials 63 , 146-57, (2015)

Full Text: HTML

Abstract

Hydrogels have gained significant attention as ideal delivery vehicles for protein drugs. However, the use of hydrogels for protein delivery has been restricted because their porous structures inevitably cause a premature leakage of encapsulated proteins. Here, we report a simple yet effective approach to regulate the protein release kinetics of hydrogels through the creation of microstructures, which serve as a reservoir, releasing their payloads in a controlled manner. Microstructured dextran hydrogels enable burst-free sustained release of PEGylated interferon over 3 months without compromising its bioactivity. These hydrogels substantially extend the circulation half-life of PEGylated interferon, allowing for less frequent dosing in a humanized mouse model of hepatitis C. The present approach opens up possibilities for the development of sustained protein delivery systems for a broad range of pharmaceutical and biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Imaging of a clinically relevant stroke model: glucose hypermetabolism revisited.

2015-03-01

[Stroke 46(3) , 835-42, (2015)]

Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties.

2014-01-01

[Int. J. Nanomedicine 9 , 2815-32, (2014)]

Uptake of neutrophil-derived Ym1 protein distinguishes wound macrophages in the absence of interleukin-4 signaling in murine wound healing.

2014-12-01

[Am. J. Pathol. 184(12) , 3249-61, (2014)]

Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons.

2015-02-20

[Biochem. Biophys. Res. Commun. 457(4) , 532-7, (2015)]

Evaluation of a dental pulp-derived cell sheet cultured on amniotic membrane substrate.

2015-01-01

[Biomed Mater Eng 25(2) , 203-12, (2015)]

More Articles...