Differential sensitivity of prostate tumor derived endothelial cells to sorafenib and sunitinib.
Alessandra Fiorio Pla, Alessia Brossa, Michela Bernardini, Tullio Genova, Guillaume Grolez, Arnaud Villers, Xavier Leroy, Natalia Prevarskaya, Dimitra Gkika, Benedetta Bussolati
Index: BMC Cancer 14 , 939, (2014)
Full Text: HTML
Abstract
Prostate cancer is the second leading cause of male cancer death in developed countries. Although the role of angiogenesis in its progression is well established, the efficacy of anti-angiogenic therapy is not clearly proved. Whether this could depend on differential responses between tumor and normal endothelial cells has not been tested.We isolated and characterized three lines of endothelial cells from prostate cancer and we tested the effect of Sunitinib and Sorafenib, and the combined treatment with the anti-androgen Casodex, on their angiogenic functions.Endothelial cells isolated from prostate tumors showed angiogenic properties and expression of androgen and vascular endothelial cell growth factor receptors. Sunitinib affected their proliferation, survival and motility while Sorafenib only showed a minor effect. At variance, Sunitinib and Sorafenib showed similar cytotoxic and anti-angiogenic effects on normal endothelial cells. Sorafenib and Sunitinib inhibited vascular endothelial cell growth factor receptor2 phosphorylation of prostate cancer endothelial cells, while they differentially modulated Akt phosphorylation as no inhibitory effect of Sorafenib was observed on Akt activation. The combined treatment of Casodex reverted the observed resistance to Sorafenib both on cell viability and on Akt activation, whereas it did not modify the response to Sunitinib.Our study demonstrates a resistant behavior of endothelial cells isolated from prostate cancer to Sorafenib, but not Sunitinib. Moreover, it shows the benefit of a multi-target therapy combining anti-angiogenic and anti-hormonal drugs to overcome resistance.
Related Compounds
Related Articles:
Imaging of a clinically relevant stroke model: glucose hypermetabolism revisited.
2015-03-01
[Stroke 46(3) , 835-42, (2015)]
2014-01-01
[Int. J. Nanomedicine 9 , 2815-32, (2014)]
2014-12-01
[Am. J. Pathol. 184(12) , 3249-61, (2014)]
Brain pericyte-derived soluble factors enhance insulin sensitivity in GT1-7 hypothalamic neurons.
2015-02-20
[Biochem. Biophys. Res. Commun. 457(4) , 532-7, (2015)]
Evaluation of a dental pulp-derived cell sheet cultured on amniotic membrane substrate.
2015-01-01
[Biomed Mater Eng 25(2) , 203-12, (2015)]