Cell 2013-12-01

Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation.

Lulu Hu, Ze Li, Jingdong Cheng, Qinhui Rao, Wei Gong, Mengjie Liu, YujiangGeno Shi, Jiayu Zhu, Ping Wang, Yanhui Xu

Index: Cell 155(7) , 1545-55, (2013)

Full Text: HTML

Abstract

TET proteins oxidize 5-methylcytosine (5mC) on DNA and play important roles in various biological processes. Mutations of TET2 are frequently observed in myeloid malignance. Here, we present the crystal structure of human TET2 bound to methylated DNA at 2.02_ resolution. The structure shows that two zinc fingers bring the Cys-rich and DSBH domains together to form a compact catalytic domain. The Cys-rich domain stabilizes the DNA above the DSBH core. TET2 specifically recognizes CpG dinucleotide and shows substrate preference for 5mC in a CpG context. 5mC is inserted into the catalytic cavity with the methyl group orientated to catalytic Fe(II) for reaction. The methyl group is not involved in TET2-DNA contacts so that the catalytic cavity allows TET2 to accommodate 5mC derivatives for further oxidation. Mutations of Fe(II)/NOG-chelating, DNA-interacting, and zinc-chelating residues are frequently observed in human cancers. Our studies provide a structural basis for understanding the mechanisms of TET-mediated 5mC oxidation.


Related Compounds

Related Articles:

FurC regulates expression of zupT for the central zinc importer ZupT of Cupriavidus metallidurans.

2014-10-01

[J. Bacteriol. 196(19) , 3461-71, (2014)]

Zinc-induced structural changes of the disordered tppp/p25 inhibits its degradation by the proteasome.

2015-01-01

[Biochim. Biophys. Acta 1852(1) , 83-91, (2015)]

Adhesin competence repressor (AdcR) from Streptococcus pyogenes controls adaptive responses to zinc limitation and contributes to virulence.

2015-01-01

[Nucleic Acids Res. 43(1) , 418-32, (2015)]

Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste.

2014-10-01

[Chemosphere 113 , 116-24, (2014)]

Curcumin alters the salt bridge-containing turn region in amyloid β(1-42) aggregates.

2014-04-18

[J. Biol. Chem. 289(16) , 11122-31, (2014)]

More Articles...