Journal of chromatography. A 2015-02-13

Isolation of aspalathin and nothofagin from rooibos (Aspalathus linearis) using high-performance countercurrent chromatography: sample loading and compound stability considerations.

Dalene de Beer, Christiaan J Malherbe, Theresa Beelders, Elize L Willenburg, D Jacobus Brand, Elizabeth Joubert

Index: J. Chromatogr. A. 1381 , 29-36, (2015)

Full Text: HTML

Abstract

Aspalathin and nothofagin, the major dihydrochalcones in rooibos (Aspalathus linearis), are valuable bioactive compounds, but their bioactivity has not been fully elucidated. Isolation of these compounds using high-performance countercurrent chromatography (HPCCC), a gentle, support-free, up-scalable technique, offers an alternative to synthesis for obtaining sufficient amounts. An HPLC-DAD method was adapted to allow rapid (16 min from injection to injection) quantification of the four major compounds (aspalathin, nothofagin, isoorientin, orientin) during development of the isolation protocol. The traditional shake-flask method, used to determine distribution constants (K(D)) for target compounds, was also adapted to obtain higher repeatability. Green rooibos leaves with a high aspalathin and nothofagin content were selected as source material. Sample loading of the polyphenol-enriched extract was limited due to constituents with emulsifying properties, but could be increased by removing ethanol-insoluble matter. Furthermore, problems with degradation of aspalathin during HPCCC separation and further processing could be limited by acidifying the HPCCC solvent system. Aspalathin was shown to be fairly stable at pH 3 (91% remaining after 29 h) compared to pH 7 (45% remaining after 29 h). Aspalathin and nothofagin with high purities (99% and 100%, respectively) were obtained from HPCCC fractions after semi-preparative HPLC.Copyright © 2015 Elsevier B.V. All rights reserved.


Related Compounds

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

More Articles...