European Journal of Mass Spectrometry 2015-01-01

Gas-phase tyrosine-to-cysteine radical migration in model systems.

Michael Lesslie, Sandra Osburn, Michael J van Stipdonk, Victor Ryzhov

Index: Eur. J. Mass Spectrom. (Chichester, Eng.) 21 , 589-97, (2015)

Full Text: HTML

Abstract

Radical migration, both intramolecular and intermolecular, from the tyrosine phenoxyl radical Tyr(O(∙)) to the cysteine radical Cys(S(∙)) in model peptide systems was observed in the gas phase. Ion-molecule reactions (IMRs) between the radical cation of homotyrosine and propyl thiol resulted in a fast hydrogen atom transfer. In addition, radical cations of the peptide LysTyrCys were formed via two different methods, affording regiospecific production of Tyr(O(∙)) or Cys(S(∙)) radicals. Collision-induced dissociation of these isomeric species displayed evidence of radical migration from the oxygen to sulfur, but not for the reverse process. This was supported by theoretical calculations, which showed the Cys(S(∙)) radical slightly lower in energy than the Tyr(O(∙)) isomer. IMRs of the LysTyrCys radical cation with allyl iodide further confirmed these findings. A mechanism for radical migration involving a proton shuttle by the C-terminal carboxylic group is proposed.


Related Compounds

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

More Articles...