Water Research 2013-09-01

Effect of pre-ozonation on the formation and speciation of DBPs.

Guanghui Hua, David A Reckhow

Index: Water Res. 47(13) , 4322-30, (2013)

Full Text: HTML

Abstract

The objective of this study was to quantitatively evaluate the effect of pre-ozonation on the formation and speciation of disinfection byproducts (DBPs) from subsequent chlorination and chloramination. Laboratory experiments were conducted on six diverse natural waters with low to medium bromide concentrations. Four groups of DBPs were investigated in this study: trihalomethanes (THMs), trihaloacetic acids (THAAs), dihaloacetic acids (DHAAs), and dihaloacetonitriles (DHANs). The results showed that the relative destructions of chlorination DBP precursors by ozone generally follow the order of DHANs > THMs & THAAs > DHAAs. Pre-ozonation substantially increased the DHAA precursors in the waters with low specific ultraviolet absorbance values. Pre-ozonation shifted the formation of DBPs to more brominated species. The bromine substitution factors (BSF) of different chlorination DBPs typically increased by 1-8 percentage points after ozonation. Pre-ozonation reduced the yields of chloramination DHAAs and THMs and increased the BSFs of chloramination DHAAs by 1-6 percentage points.Published by Elsevier Ltd.


Related Compounds

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Itraconazole suppresses the growth of glioblastoma through induction of autophagy: involvement of abnormal cholesterol trafficking.

2014-07-01

[Autophagy 10(7) , 1241-55, (2014)]

Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites.

2015-01-01

[Arch. Toxicol. 89(1) , 107-19, (2015)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

More Articles...