Journal of Environmental Management 2015-10-01

Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters.

Fabrizio Pietrini, Valentina Iori, Daniele Bianconi, Giovanni Mughini, Angelo Massacci, Massimo Zacchini

Index: J. Environ. Manage. 162 , 221-31, (2015)

Full Text: HTML

Abstract

Eucalyptus is a promising species for ecological restoration but plant performances under environmental constraints need to be better investigated. In particular, the toxic effects of metals on this plant species are poorly described in the literature. In this work, morpho-physiological and biochemical responses to cadmium were analysed in two eucalypt genotypes (hybrid clones of Eucalyptus camaldulensis × Eucalyptus globulus ssp. bicostata J.B. Kirkp named Velino ex 7 and Viglio ex 358) exposed for 3 weeks to 50 μM CdSO4 under hydroponics. The two eucalypt clones showed a different sensitivity to the metal. The growth reduction caused by cadmium was less than 30% in clone Velino and about 50% in clone Viglio. Cadmium mostly accumulated in plant roots and, to a lesser extent, in stem, as highlighted by the low translocation factor (Tf) measured in both clones. Net photosynthesis measurement, chlorophyll fluorescence images, transpiration values and chlorophyll content revealed a cadmium-induced impairment of physiological processes at the leaf level, which was more evident in clone Viglio. Metal binding and antioxidative compound content was differentially affected by cadmium exposure in the two eucalypt clones. Particularly, the content of thiols like cysteine and glutathione, organic acids like oxalate and citrate, and polyamines were markedly modulated in plant organs by metal treatment and highlighted different defence responses between the clones. Cadmium tolerance and accumulation ability of the eucalypt clones were evaluated and the potential of E. camaldulensis for the reclamation of metal polluted-waters is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

2014-12-01

[J. Endocrinol. 223(3) , 241-53, (2014)]

Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy.

2015-01-01

[Breast Cancer Res. 17 , 19, (2015)]

Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress.

2015-01-01

[Toxicol. Appl. Pharmacol. 282(1) , 77-89, (2015)]

Paralcaligenes ginsengisoli sp. nov., isolated from ginseng cultivated soil.

2015-09-01

[Antonie van Leeuwenhoek 108 , 619-26, (2015)]

Mass spectrometric detection and characterization of atypical membrane-bound zinc-sensitive phosphatases modulating GABAA receptors.

2014-01-01

[PLoS ONE 9(6) , e100612, (2014)]

More Articles...