The triggering receptor expressed on myeloid cells 2 inhibits complement component 1q effector mechanisms and exerts detrimental effects during pneumococcal pneumonia.
Omar Sharif, Riem Gawish, Joanna M Warszawska, Rui Martins, Karin Lakovits, Anastasiya Hladik, Bianca Doninger, Julia Brunner, Ana Korosec, Roland E Schwarzenbacher, Tiina Berg, Robert Kralovics, Jacques Colinge, Ildiko Mesteri, Susan Gilfillan, Andrea Salmaggi, Admar Verschoor, Marco Colonna, Sylvia Knapp
Index: PLoS Pathog. 10(6) , e1004167, (2014)
Full Text: HTML
Abstract
Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2(-/-) AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-δ (PPAR-δ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2(-/-) mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs.
Related Compounds
Related Articles:
2015-03-15
[Cancer Res. 75(6) , 1102-12, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-22
[J. Ethnopharmacol. 164 , 265-72, (2015)]
2015-01-01
[Bioresour. Technol. 176 , 156-62, (2014)]
Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.
2014-12-08
[Biomacromolecules 15(12) , 4561-9, (2014)]