Integrative Biology 2015-11-01

Fibronectin fibrillogenesis facilitates mechano-dependent cell spreading, force generation, and nuclear size in human embryonic fibroblasts.

Lewis E Scott, Devin B Mair, Jiten D Narang, Kirubel Feleke, Christopher A Lemmon

Index: Integr. Biol. (Camb.) 7 , 1454-65, (2015)

Full Text: HTML

Abstract

Cells respond to mechanical cues from the substrate to which they are attached. These mechanical cues drive cell migration, proliferation, differentiation, and survival. Previous studies have highlighted three specific mechanisms through which substrate stiffness directly alters cell function: increasing stiffness drives (1) larger contractile forces; (2) increased cell spreading and size; and (3) altered nuclear deformation. While studies have shown that substrate mechanics are an important cue, the role of the extracellular matrix (ECM) has largely been ignored. The ECM is a crucial component of the mechanosensing system for two reasons: (1) many ECM fibrils are assembled by application of cell-generated forces, and (2) ECM proteins have unique mechanical properties that will undoubtedly alter the local stiffness sensed by a cell. We specifically focused on the role of the ECM protein fibronectin (FN), which plays a critical role in de novo tissue production. In this study, we first measured the effects of substrate stiffness on human embryonic fibroblasts by plating cells onto microfabricated pillar arrays (MPAs) of varying stiffness. Cells responded to increasing substrate stiffness by generating larger forces, spreading to larger sizes, and altering nuclear geometry. These cells also assembled FN fibrils across all stiffnesses, with optimal assembly occurring at approximately 6 kPa. We then inhibited FN assembly, which resulted in dramatic reductions in contractile force generation, cell spreading, and nuclear geometry across all stiffnesses. These findings suggest that FN fibrils play a critical role in facilitating cellular responses to substrate stiffness.


Related Compounds

Related Articles:

A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis.

2015-04-01

[Angiogenesis 18(2) , 209-17, (2015)]

Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway.

2015-01-01

[Drug Des. Devel. Ther. 9 , 1555-84, (2015)]

Analysis of cytochrome P450 CYP119 ligand-dependent conformational dynamics by two-dimensional NMR and X-ray crystallography.

2015-04-17

[J. Biol. Chem. 290(16) , 10000-17, (2015)]

An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence.

2015-02-17

[Proc. Natl. Acad. Sci. U. S. A. 112(7) , E747-56, (2015)]

Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes.

2014-07-01

[Nucleic Acids Res. 42(13) , 8635-47, (2014)]

More Articles...