Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties.
Joana M Silva, Sofia G Caridade, Rui L Reis, João F Mano
Index: Soft Matter 12 , 1200-9, (2016)
Full Text: HTML
Abstract
The design of self-standing multilayered structures based on biopolymers has been attracting increasing interest due to their potential in the biomedical field. However, their use has been limited due to their gel-like properties. Herein, we report the combination of covalent and ionic cross-linking, using natural and non-cytotoxic cross-linkers, such as genipin and calcium chloride (CaCl2). Combining both cross-linking types the mechanical properties of the multilayers increased and the water uptake ability decreased. The ionic cross-linking of multilayered chitosan (CHI)-alginate (ALG) films led to freestanding membranes with multiple interesting properties, such as: improved mechanical strength, calcium-induced adhesion and shape memory ability. The use of CaCl2 also offered the possibility of reversibly switching all of these properties by simple immersion in a chelate solution. We attribute the switch-ability of the mechanical properties, shape memory ability and the propensity for induced-adhesion to the ionic cross-linking of the multilayers. These findings suggested the potential of the developed polysaccharide freestanding membranes in a plethora of research fields, including in biomedical and biotechnological fields.
Related Compounds
Related Articles:
Safety and efficacy of ethylenediaminetetraacetic acid for removing microcapsules.
2013-07-01
[J. Surg. Res. 183(1) , 442-9, (2013)]
2013-09-01
[Pak. J. Pharm. Sci. 26(5) , 929-37, (2013)]
2013-09-15
[Int. J. Pharm. 454(1) , 125-34, (2013)]
2013-10-01
[Colloids Surf. B Biointerfaces 110 , 395-402, (2013)]
2015-01-01
[Eur. Cell. Mater. 30 , 132-46; discussion 146-7, (2015)]