Heterozygote Wdr36-deficient mice do not develop glaucoma.
Martin Gallenberger, Markus Kroeber, Loreen März, Marcus Koch, Rudolf Fuchshofer, Barbara M Braunger, Takeshi Iwata, Ernst R Tamm
Index: Exp. Eye Res. 128 , 83-91, (2014)
Full Text: HTML
Abstract
There is an ongoing controversy regarding the role of WDR36 sequence variants in the pathogenesis of primary open-angle glaucoma (POAG). WDR36 is a nucleolar protein involved in the maturation of 18S rRNA. The function of WDR36 is essential as homozygous Wdr36-deficient mouse embryos die before reaching the blastocyst stage. Here we provide a detailed analysis of the phenotype of heterozygous Wdr36-deficient mice. Loss of one Wdr36 allele causes a substantial reduction in the expression of Wdr36 mRNA. In the eyes of Wdr36(+/-) animals, the structure of the tissues involved in aqueous humor circulation and of the optic nerve head are not different from that of control littermates. In addition, one-year-old Wdr36(+/-) animals do not differ from wild-type animals with regards to intraocular pressure and number of optic nerve axons. The susceptibility of retinal ganglion cells to excitotoxic damage induced by NMDA is similar in Wdr36(+/-) and wild-type animals. Moreover, the amount of optic nerve axonal damage induced by high IOP is not different between Wdr36(+/-) and wild-type mice. Transgenic overexpression of mutated Del605-607 Wdr36 in Wdr36(+/-) animals does not cause changes in the number of optic nerve axons or susceptibility to excitotoxic damage. In addition, analysis of 18S rRNA maturation in Del605-607 Wdr36(+/-) or Wdr36(+/-) mice does not show obvious differences in rRNA processing or in the amounts of precursor forms when compared to wild-type animals. Our data obtained in Wdr36(+/-) mice do not support the assumption of a causative role for WDR36 in the pathogenesis of POAG. Copyright © 2014 Elsevier Ltd. All rights reserved.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]
Functional consequence of the MET-T1010I polymorphism in breast cancer.
2015-02-20
[Oncotarget 6(5) , 2604-14, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]