New Biotechnology 2015-12-25

Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway.

Benjamin Ricken, Oliver Fellmann, Hans-Peter E Kohler, Andreas Schäffer, Philippe François-Xavier Corvini, Boris Alexander Kolvenbach

Index: New Biotechnology 32 , 710-5, (2015)

Full Text: HTML

Abstract

Microbacterium sp. strain BR1 is among the first bacterial isolates which were proven to degrade sulfonamide antibiotics. The degradation is initiated by an ipso-substitution, initiating the decay of the molecule into sulfur dioxide, the substrate specific heterocyclic moiety as a stable metabolite and benzoquinone imine. The latter appears to be instantaneously reduced to p-aminophenol, as that in turn was detected as the first stable intermediate. This study investigated the downstream pathway of sulfonamide antibiotics by testing the strain's ability to degrade suspected intermediates of this pathway. While p-aminophenol was degraded, degradation products could not be identified. Benzoquinone was shown to be degraded to hydroquinone and hydroquinone in turn was shown to be degraded to 1,2,4-trihydroxybenzene. The latter is assumed to be the potential substrate for aromatic ring cleavage. However, no products from the degradation of 1,2,4-trihydroxybenzene could be identified. There are no signs of accumulation of intermediates causing oxidative stress, which makes Microbacterium sp. strain BR1 an interesting candidate for industrial waste water treatment. Copyright © 2015. Published by Elsevier B.V.


Related Compounds

Related Articles:

Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

2014-08-01

[Mol. Plant 7(8) , 1365-83, (2014)]

Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.

2014-12-11

[Oncogene 33(50) , 5688-96, (2014)]

Functional consequence of the MET-T1010I polymorphism in breast cancer.

2015-02-20

[Oncotarget 6(5) , 2604-14, (2015)]

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Melatonin-mediated Bim up-regulation and cyclooxygenase-2 (COX-2) down-regulation enhances tunicamycin-induced apoptosis in MDA-MB-231 cells.

2015-04-01

[J. Pineal Res. 58(3) , 310-20, (2015)]

More Articles...