Prodrug approach to improve absorption of prednisolone.
Ye Sheng, Xiaoyan Yang, Dhananjay Pal, Ashim K Mitra
Index: Int. J. Pharm. 487 , 242-9, (2015)
Full Text: HTML
Abstract
Amino acid and dipeptide prodrugs have been developed to examine their potential in enhancing aqueous solubility and permeability as well as to bypass P-glycoprotein (P-gp) mediated cellular efflux of prednisolone. Prodrugs have been synthesized and identified with LC/MS/MS and NMR. Prodrugs displayed significantly higher aqueous solubility relative to prednisolone. These compounds also exhibited higher stability under acidic conditions relative to basic medium. [14]-Erythromycin uptake remained unaltered in the presence of valine-valine-prednisolone (VVP) indicating lower affinity toward P-gp. Moreover, VVP generated significantly higher transepithelial permeability across MDCK-MDR1 cells compared to prednisolone. Importantly, [3H]-GlySar uptake diminished significantly in the presence of VVP indicating high affinity toward peptide transporters. Moreover, prednisolone was regenerated from VVP due to enzymatic hydrolysis in SIRC cell homogenate. Results obtained from these studies clearly suggest that peptide transporter targeted prodrugs is a viable strategy to improve aqueous solubility and overcome P-gp mediated cellular efflux of prednisolone. Copyright © 2015. Published by Elsevier B.V.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]
Functional consequence of the MET-T1010I polymorphism in breast cancer.
2015-02-20
[Oncotarget 6(5) , 2604-14, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]