Genetically engineered fusion of MAP-1 and factor H domains 1-5 generates a potent dual upstream inhibitor of both the lectin and alternative complement pathways.
Mie Anemone Nordmaj, Lea Munthe-Fog, Estrid Hein, Mikkel-Ole Skjoedt, Peter Garred
Index: FASEB J. 29 , 4945-55, (2015)
Full Text: HTML
Abstract
Inhibition of the complement cascade has emerged as an option for treatment of a range of diseases. Mannose-binding lectin/ficolin/collectin-associated protein (MAP-1) is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway. The central regulator of the alternative pathway (AP) is complement factor H (FH). Our aim was to design a dual upstream inhibitor of both human lectin and APs by fusing MAP-1 with a part of FH. There were 2 different recombinant chimeric proteins comprising full-length human MAP-1 and the first 5 N-terminal domains of human FH designed. The FH domains were orientated either in the N- or C-terminal part of MAP-1. The complement inhibition potential in human serum was assessed. Both chimeric constructs displayed the characteristics of the native molecules and bound to the PRMs with an EC50 of ∼ 2 nM. However, when added to serum diluted 1:4 in a solid-phase functional assay, only the first 5 N-terminal domains of complement FH fused to the C-terminal part of full-length MAP-1 chimeric construct were able to combine inhibition of lectin and AP activation with an half maximal inhibitory concentration of ∼ 100 and 20 nM, respectively. No effect was seen on the classical pathway. Fusion of MAP-1 with FH domains represents a novel therapeutic approach for selective targeting upstream and central complement activation at sites of inflammation.© FASEB.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]
Functional consequence of the MET-T1010I polymorphism in breast cancer.
2015-02-20
[Oncotarget 6(5) , 2604-14, (2015)]
Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.
2015-04-13
[Biomacromolecules 16(4) , 1382-9, (2015)]
2015-04-01
[J. Pineal Res. 58(3) , 310-20, (2015)]