Biomaterials 2013-05-01

Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel.

Andrea J Mothe, Roger Y Tam, Tasneem Zahir, Charles H Tator, Molly S Shoichet

Index: Biomaterials 34(15) , 3775-83, (2013)

Full Text: HTML

Abstract

Traumatic injury to the spinal cord causes cell death, demyelination, axonal degeneration, and cavitation resulting in functional motor and sensory loss. Stem cell therapy is a promising approach for spinal cord injury (SCI); however, this strategy is currently limited by the poor survival and uncontrolled differentiation of transplanted stem cells. In an attempt to achieve greater survival and integration with the host tissue, we examined the survival and efficacy of adult brain-derived neural stem/progenitor cells (NSPCs) injected within a hydrogel blend of hyaluronan and methyl cellulose (HAMC) into a subacute, clinically relevant model of rat SCI. Prior to use, HAMC was covalently modified with recombinant rat platelet-derived growth factor-A (rPDGF-A) to promote oligodendrocytic differentiation. SCI rats transplanted with NSPCs in HAMC-rPDGF-A showed improved behavioral recovery compared to rats transplanted with NSPCs in media. Rats with NSPC/HAMC-rPDGF-A transplants had a significant reduction in cavitation, improved graft survival, increased oligodendrocytic differentiation, and sparing of perilesional host oligodendrocytes and neurons. These data suggest that HAMC-rPDGF-A is a promising vehicle for cell delivery to the injured spinal cord.Copyright © 2013 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

In Vivo Profiling Reveals a Competent Heat Shock Response in Adult Neurons: Implications for Neurodegenerative Disorders.

2015-01-01

[PLoS ONE 10 , e0131985, (2015)]

Compounded preparations with nystatin for oral and oromucosal administration.

2013-01-01

[Acta Pol. Pharm. 70(4) , 759-62, (2013)]

Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability.

2014-12-01

[Pharm. Dev. Technol. 19(8) , 976-86, (2014)]

A new self-microemulsifying mouth dissolving film to improve the oral bioavailability of poorly water soluble drugs.

2013-09-01

[Drug Dev. Ind. Pharm. 39(9) , 1284-90, (2013)]

Formulation and drying of miconazole and itraconazole nanosuspensions.

2013-02-25

[Int. J. Pharm. 443(1-2) , 209-20, (2013)]

More Articles...