Pharmaceutical Development and Technology 2014-12-01

Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability.

Lindsay A Wegiel, Yuhong Zhao, Lisa J Mauer, Kevin J Edgar, Lynne S Taylor

Index: Pharm. Dev. Technol. 19(8) , 976-86, (2014)

Full Text: HTML

Abstract

We have investigated the physical stability of amorphous curcumin dispersions and the role of curcumin-polymer intermolecular interactions in delaying crystallization. Curcumin is an interesting model compound as it forms both intra and intermolecular hydrogen bonds in the crystal. A structurally diverse set of amorphous dispersion polymers was investigated; poly(vinylpyrrolidone), Eudragit E100, carboxymethyl cellulose acetate butyrate, hydroxypropyl methyl cellulose (HPMC) and HPMC-acetate succinate. Mid-infrared spectroscopy was used to determine and quantify the extent of curcumin-polymer interactions. Physical stability under different environmental conditions was monitored by powder X-ray diffraction. Curcumin chemical stability was monitored by UV-Vis spectroscopy. Isolation of stable amorphous curcumin was difficult in the absence of polymers. Polymers proved to be effective curcumin crystallization inhibitors enabling the production of amorphous solid dispersions; however, the polymers showed very different abilities to inhibit crystallization during long-term storage. Curcumin intramolecular hydrogen bonding reduced the extent of its hydrogen bonding with polymers; hence most polymers were not highly effective crystallization inhibitors. Overall, polymers proved to be crystallization inhibitors, but inhibition was limited due to the intramolecular hydrogen bonding in curcumin, which leads to a decrease in the ability of the polymers to interact at a molecular level.


Related Compounds

Related Articles:

Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release.

2014-11-01

[J. Pharm. Sci. 103(11) , 3764-71, (2014)]

Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site.

2015-03-14

[Org. Biomol. Chem. 13(10) , 3040-7, (2015)]

An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans.

2014-11-01

[IUBMB Life 66(11) , 780-5, (2015)]

Identification of the cellular mechanisms that modulate trafficking of frizzled family receptor 4 (FZD4) missense mutants associated with familial exudative vitreoretinopathy.

2014-06-01

[Invest. Ophthalmol. Vis. Sci. 55(6) , 3423-31, (2014)]

Improved plasma membrane expression of the trafficking defective P344R mutant of muscle, skeletal, receptor tyrosine kinase (MuSK) causing congenital myasthenic syndrome.

2015-03-01

[Int. J. Biochem. Cell Biol. 60 , 119-29, (2015)]

More Articles...