Screening for anabolic steroids in urine of forensic cases using fully automated solid phase extraction and LC-MS-MS.
David W Andersen, Kristian Linnet
Index: J. Anal. Toxicol. 38(9) , 637-44, (2014)
Full Text: HTML
Abstract
A screening method for 18 frequently measured exogenous anabolic steroids and the testosterone/epitestosterone (T/E) ratio in forensic cases has been developed and validated. The method involves a fully automated sample preparation including enzyme treatment, addition of internal standards and solid phase extraction followed by analysis by liquid chromatography-tandem mass spectrometry (LC-MS-MS) using electrospray ionization with adduct formation for two compounds. Urine samples from 580 forensic cases were analyzed to determine the T/E ratio and occurrence of exogenous anabolic steroids. Extraction recoveries ranged from 77 to 95%, matrix effects from 48 to 78%, overall process efficiencies from 40 to 54% and the lower limit of identification ranged from 2 to 40 ng/mL. In the 580 urine samples analyzed from routine forensic cases, 17 (2.9%) were found positive for one or more anabolic steroids. Only seven different steroids including testosterone were found in the material, suggesting that only a small number of common steroids are likely to occur in a forensic context. The steroids were often in high concentrations (>100 ng/mL), and a combination of steroids and/or other drugs of abuse were seen in the majority of cases. The method presented serves as a fast and automated screening procedure, proving the suitability of LC-MS-MS for analyzing anabolic steroids.© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Related Compounds
Related Articles:
2014-01-01
[Retrovirology 11 , 118, (2015)]
2014-01-01
[PLoS ONE 9(9) , e108055, (2014)]
2014-07-07
[Mol. Pharm. 11(7) , 1991-6, (2014)]
2015-02-01
[Cancer Chemother. Pharmacol. 75(2) , 431-7, (2015)]
Use of an enzyme-assisted method to improve protein extraction from olive leaves.
2015-02-15
[Food Chem. 169 , 28-33, (2014)]