Biochimica et Biophysica Acta 2015-01-01

Palmitoylation as a key factor to modulate SP-C-lipid interactions in lung surfactant membrane multilayers.

Nuria Roldan, Erik Goormaghtigh, Jesús Pérez-Gil, Begoña Garcia-Alvarez

Index: Biochim. Biophys. Acta 1848(1 Pt A) , 184-91, (2015)

Full Text: HTML

Abstract

Surfactant protein C (SP-C) has been regarded as the most specific protein linked to development of mammalian lungs, and great efforts have been done to understand its structure-function relationships. Previous evidence has outlined the importance of SP-C palmitoylation to sustain the proper dynamics of lung surfactant, but the mechanism by which this posttranslational modification aids SP-C to stabilize the interfacial surfactant film along the compression-expansion breathing cycles, is still unrevealed. In this work we have compared the structure, orientation and lipid-protein interactions of a native palmitoylated SP-C with those of a non-palmitoylated recombinant SP-C (rSP-C) form in air-exposed multilayer membrane environments, by means of ATR-FTIR spectroscopy. Palmitoylation does not affect the secondary structure of the protein, which exhibits a full α-helical conformation in partly dehydrated phospholipid multilayer films. However, differences between the Amide I band of the IR spectrum of palmitoylated and non-palmitoylated proteins suggest subtle differences affecting the environment of their helical component. These differences are accompanied by differential effects on the IR bands from phospholipid phosphates, indicating that palmitoylation modulates lipid-protein interactions at the headgroup region of phospholipid layers. On the other hand, the relative dichroic absorption of polarized IR has allowed calculating that the palmitoylated protein adopts a more tilted transmembrane orientation than the non-palmitoylated SP-C, likely contributing to more compact, dehydrated and possibly stable multilayer lipid-protein films. As a whole, the behavior of multilayer films containing palmitoylated SP-C may reflect favorable structural properties for surfactant reservoirs at the air-liquid respiratory interface. Copyright © 2014 Elsevier B.V. All rights reserved.


Related Compounds

Related Articles:

A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

2015-05-01

[J. Virol. 89(9) , 4918-31, (2015)]

Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response.

2015-01-01

[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.

2014-10-01

[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]

The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184.

2014-09-01

[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]

More Articles...