Journal of chromatography. A 2015-01-16

Determination of nonpolar and polar lipid classes in human plasma, erythrocytes and plasma lipoprotein fractions using ultrahigh-performance liquid chromatography-mass spectrometry.

Michal Holčapek, Eva Cífková, Blanka Červená, Miroslav Lísa, Jitka Vostálová, Jan Galuszka

Index: J. Chromatogr. A. 1377 , 85-91, (2015)

Full Text: HTML

Abstract

A novel normal-phase (NP) ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC/MS) method is developed for a separation and quantitation of nonpolar lipid classes occurring in human plasma, erythrocytes and plasma lipoprotein fractions. The baseline class separation of cholesteryl esters (CE), cholesterol, triacylglycerols (TG), regioisomers of 1,2- and 1,3-diacylglycerols (DG) and 1-monoacylglycerols (1-MG) is achieved using an optimized hexane - 2-propanol-acetonitrile mobile phase within 18min for all nonpolar lipid classes or only 9min excluding monoacylglycerols not detected in studied samples. The determination of individual nonpolar lipid classes is performed by the response factor approach and the use of dioleoyl ethylene glycol as a single internal standard. Polar lipid classes, such as phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidylcholines (PC), sphingomyelins (SM) and lysophosphatidylcholines (LPC), are separated by hydrophilic interaction liquid chromatography (HILIC) using 5mmol/L aqueous ammonium acetate-methanol-acetonitrile gradient within 13minutes. The quantitation of polar lipid classes is done by a similar approach as for nonpolar lipid classes, but a different internal standard (sphingosyl PE d17:1/12:0) is used. The complementary information on fatty acyl profiles after the transesterification of the total lipid extract is obtained by gas chromatography with flame ionization detection (GC/FID). The applicability of developed methodology for fast and comprehensive characterization of blood lipidome is illustrated on samples of human plasma, erythrocytes, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) fractions. Copyright © 2014 Elsevier B.V. All rights reserved.


Related Compounds

Related Articles:

A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

2015-05-01

[J. Virol. 89(9) , 4918-31, (2015)]

Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response.

2015-01-01

[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]

SSX2 is a novel DNA-binding protein that antagonizes polycomb group body formation and gene repression.

2015-01-01

[Nucleic Acids Res. 42(18) , 11433-46, (2014)]

The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.

2014-10-01

[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]

The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184.

2014-09-01

[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]

More Articles...