Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus.
Bahman Khameneh, Milad Iranshahy, Morteza Ghandadi, Davod Ghoochi Atashbeyk, Bibi Sedigheh Fazly Bazzaz, Mehrdad Iranshahi
Index: Drug Dev. Ind. Pharm. 41 , 989-94, (2015)
Full Text: HTML
Abstract
Antibiotic resistance has stimulated the research for developing novel strategies that can prevent bacterial growth. Methicillin-resistant Staphylococcus aureus (MRSA), regarded as one of the most serious antibiotic-resistant bacteria which has been conventionally recognized as a nosocomial pathogen.Nanoliposomal formulations of piperine and gentamicin were prepared by dehydration-rehydration (DRV) method and characterized for size, zeta potential and encapsulation efficiency. Antibactericidal activities of liposomal and free forms were evaluated against MRSA ATCC 43300 by the determination of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and fractional inhibitory concentration index (FICI). The time-kill studies were carried out to evaluate the potency of antibacterial agents. The effect of piperine on bacterial efflux pumps was also investigated.MIC values of gentamicin and piperine were 32 and 100 µg/mL, respectively. Synergetic effects were observed by the combination of gentamicin and piperine and FICI was determined to be 0.5. Following incorporation of gentamicin into liposomal gentamicin and liposomal combination, the MIC values were reduced 16- and 32-fold, respectively. MBC values of gentamicin reduced 4 and 8 times following incorporation into gentamicin and combination liposomes, respectively. In comparison with vancomycin, liposomal combination was more effective in bacterial inhibition and killing. Liposomal combination was the most effective preparations in time-kill study. Our findings indicated that liposomal piperine was able to inhibit the efflux pump sufficiently.The results of this study revealed that liposomal combination is a powerful nano-antibacterial agent to eradicate MRSA infection. This dual-loaded formulation was an effective approach for eradication of MRSA.
Related Compounds
Related Articles:
2015-05-01
[J. Virol. 89(9) , 4918-31, (2015)]
2015-01-01
[Eur. J. Pharm. Biopharm. 89 , 30-9, (2015)]
2015-01-01
[Nucleic Acids Res. 42(18) , 11433-46, (2014)]
The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions.
2014-10-01
[Biochim. Biophys. Acta 1838(10) , 2615-24, (2014)]
2014-09-01
[Pharmacol. Biochem. Behav. 124 , 153-9, (2014)]