ACS Nano 2014-07-22

Preparation and mechanism insight of nuclear envelope-like polymer vesicles for facile loading of biomacromolecules and enhanced biocatalytic activity.

Yunqing Zhu, Fangyingkai Wang, Cong Zhang, Jianzhong Du

Index: ACS Nano 8(7) , 6644-54, (2014)

Full Text: HTML

Abstract

The facile loading of sensitive and fragile biomacromolecules, such as glucose oxidase, hemoglobin, and ribonucleic acid (RNA), via synthetic vehicles directly in pure aqueous media is an important technical challenge. Inspired by the nucleus pore complex that connects the cell nucleus and the cytoplasm across the nuclear envelope, here we describe the development of a kind of polymeric nuclear envelope-like vesicle (NEV) to address this problem. The NEV is tailored to form the polymer pore complex (70 nm, similar to a nucleus pore complex) within the vesicle membrane based on nanophase segregation, which is confirmed via fluorescence spectrometry and dynamic light scattering (DLS) during self-assembly. This pH-triggered polymer pore complex can mediate the transportation of biomacromolecules across the vesicle membrane. Moreover, the NEVs facilitate the natural consecutive enzyme-catalyzed reactions via the H(+) sponge effect. This simple strategy might also be extended for mimicking other synthetic cell organelles.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Polymerization of affinity ligands on a surface for enhanced ligand display and cell binding.

2014-12-08

[Biomacromolecules 15(12) , 4561-9, (2014)]

Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

2014-10-01

[Eur. J. Pharm. Biopharm. 88(2) , 406-14, (2014)]

Use of an enzyme-assisted method to improve protein extraction from olive leaves.

2015-02-15

[Food Chem. 169 , 28-33, (2014)]

Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

2015-04-30

[Int. J. Pharm. 484(1-2) , 283-91, (2015)]

More Articles...