Science 2013-12-13

Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.

K Schuchmann, V Müller

Index: Science 342(6164) , 1382-5, (2013)

Full Text: HTML

Abstract

Storage and transportation of hydrogen is a major obstacle for its use as a fuel. An increasingly considered alternative for the direct handling of hydrogen is to use carbon dioxide (CO2) as an intermediate storage material. However, CO2 is thermodynamically stable, and developed chemical catalysts often require high temperatures, pressures, and/or additives for high catalytic rates. Here, we present the discovery of a bacterial hydrogen-dependent carbon dioxide reductase from Acetobacterium woodii directly catalyzing the hydrogenation of CO2. We also demonstrate a whole-cell system able to produce formate as the sole end product from dihydrogen (H2) and CO2 as well as syngas. This discovery opens biotechnological alternatives for efficient CO2 hydrogenation either by using the isolated enzyme or by employing whole-cell catalysis.


Related Compounds

Related Articles:

Neuroprotective effect of modified Chungsimyeolda-tang, a traditional Korean herbal formula, via autophagy induction in models of Parkinson's disease.

2015-01-15

[J. Ethnopharmacol. 159 , 93-101, (2014)]

Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1897-907, (2014)]

Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

2014-12-01

[Biochim. Biophys. Acta 1842(12 Pt A) , 2345-56, (2014)]

Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.

2015-02-13

[J. Chromatogr. A. 1381 , 54-63, (2015)]

Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route.

2014-12-30

[Proc. Natl. Acad. Sci. U. S. A. 111(52) , 18709-14, (2014)]

More Articles...