Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction.
Yun Luo, Aurélien Habrioux, Laura Calvillo, Gaetano Granozzi, Nicolas Alonso-Vante
Index: ChemPhysChem 15(10) , 2136-44, (2014)
Full Text: HTML
Abstract
Rare-earth-element (Y, Gd) modified Pt nanoparticles (NPs) supported on a carbon substrate (Vulcan XC-72) are synthesized via a water-in-oil chemical route. In both cases, X-ray diffraction (XRD) measurements show the non-formation of an alloyed material. Photoemission spectroscopy (XPS) results reveal that Y and Gd are oxidized. Additionally, no evidence of an electronic modification of Pt can be brought to light. Transmission electron microscopy (TEM) studies indicate that Pt-Y(2)O(3) and Pt-Gd(2)O(3) particles are well dispersed on the substrate-and that their average particle sizes are smaller than the Pt-NP sizes. The catalytic activity of the Pt-Y(2)O(3)/C and Pt-Gd(2)O(3)/C catalysts towards the oxygen reduction reaction (ORR) is studied in a 0.5 M H(2)SO(4) electrolyte. The surface and mass specific activities of the Pt-Y(2)O(3)/C catalyst towards the ORR at 0.9 V (vs. the reversible hydrogen electrode, RHE) are (54.3±1.2) μA cm(-2)(Pt) and MA=(23.1±0.5) mA mg(-1)(Pt), respectively. These values are 1.3-, and 1.6-fold higher than the values obtained with a Pt/C catalyst. Although the as-prepared Pt-Gd(2)O(3)/C catalyst has a lower catalytic activity for the ORR compared to Pt/C, the heat-treated sample shows a surface specific activity of about (53.0±0.7) μA cm(-2) Pt , and a mass specific activity (MA) of about (18.2±0.5) mA mg(-1) Pt at 0.9 V (vs. RHE). The enhancement of the ORR kinetics on the Pt-Y(2)O(3)/C and heat-treated Pt-Gd(2)O(3)/C catalysts could be associated with the formation of platinum NPs presenting modified surface properties.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related Compounds
Related Articles:
2015-03-01
[J. Liposome Res. 25(1) , 38-45, (2015)]
Development of Man-rGO for Targeted Eradication of Macrophage Ablation.
2015-09-08
[Mol. Pharm. 12 , 3226-36, (2015)]
2015-06-10
[ACS Appl. Mater. Interfaces 7 , 12168-75, (2015)]
2015-09-01
[Chem. Asian J. 10 , 1940-7, (2015)]
Surface modification-induced phase transformation of hexagonal close-packed gold square sheets.
2015-01-01
[Nat. Commun. 6 , 6571, (2015)]