Enzyme and Microbial Technology 2015-10-01

Continuous hydrolysis of carboxymethyl cellulose with cellulase aggregates trapped inside membranes.

Le Truc Nguyen, Kristyn Rui Shan Neo, Kun-Lin Yang

Index: Enzyme Microb. Technol. 78 , 34-9, (2015)

Full Text: HTML

Abstract

Enzymatic hydrolysis of cellulose is often conducted in batch processes in which hydrolytic products tend to inhibit enzyme activity. In this study, we report a method for continuous hydrolysis of carboxymethyl cellulose (CMC) by using cross-linked cellulase aggregate (XCA) trapped inside a membrane. XCA particles prepared by using a millifluidic reactor have a uniform size distribution around 350 nm. Because of their large size, XCA particles in solutions can be filtered through a polyethersulfone membrane to collect 87.1 ± 0.9% of XCA particles. The membrane with impregnated XCA can be used as a catalyst for hydrolysis of CMC in a continuous mode. When the CMC concentration is 1.0 g/l and the flow rate is 2 μl/min, 53.9% of CMC is hydrolyzed to reducing sugars. The membrane with XCA is very stable under continuously flowing solutions. After 72 h of reaction, 97.5% of XCA remains inside the membrane.Copyright © 2015 Elsevier Inc. All rights reserved.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

2015-04-01

[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]

H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

2014-12-01

[J. Endocrinol. 223(3) , 241-53, (2014)]

Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin.

2014-12-29

[Small 10(24) , 5126-36, (2014)]

Decreased lipogenesis in white adipose tissue contributes to the resistance to high fat diet-induced obesity in phosphatidylethanolamine N-methyltransferase-deficient mice.

2014-10-01

[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]

More Articles...