Food Chemistry 2015-03-01

Phytochemicals preservation in strawberry as affected by pH modulation.

Ana Oliveira, Maria Helena Gomes, Elisabete M C Alexandre, Fátima Poças, Domingos P F Almeida, Manuela Pintado

Index: Food Chem. 170 , 74-83, (2014)

Full Text: HTML

Abstract

Strawberries purées are incorporated in foods and subjected to pH modulation according to the expected final food matrix. The effect of pH on strawberry polyphenols stored at 4 and 23 °C for 90 days was evaluated. Total antioxidant activity and total phenolics content were only affected by time according to a first order model. The pH 4.5 induced higher decrease in (-)-epigallocatechin gallate (71% and 79%) and quercetin-3-glucoside (29% and 36%), for both storage temperatures. For pH 2.5 and 3.0, ellagic acid increased 84% for 4 °C and 185% for 23 °C. Anthocyanins concentration changes along storage were well described by first order model. The pH value of 2.5 presented the lower kinetic constant rate where cyanidin-3-glucoside, pelargonidin-3-glucoside and pelargonidin-3-rutinoside had a k=0.04, 0.05 and 0.03 day(-1). Lower storage temperature (4 °C) and lower pH (2.5) were the best condition for the preservation of polyphenols in pasteurized strawberry during a 90-day storage period.Copyright © 2014 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Aptamer-based polyvalent ligands for regulated cell attachment on the hydrogel surface.

2015-04-13

[Biomacromolecules 16(4) , 1382-9, (2015)]

Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus.

2015-04-01

[Appl. Environ. Microbiol. 81(7) , 2274-83, (2015)]

H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

2014-12-01

[J. Endocrinol. 223(3) , 241-53, (2014)]

Loading and release mechanism of red clover necrotic mosaic virus derived plant viral nanoparticles for drug delivery of doxorubicin.

2014-12-29

[Small 10(24) , 5126-36, (2014)]

Decreased lipogenesis in white adipose tissue contributes to the resistance to high fat diet-induced obesity in phosphatidylethanolamine N-methyltransferase-deficient mice.

2014-10-01

[Biochim. Biophys. Acta 1851(2) , 152-62, (2015)]

More Articles...