Food Chemistry 2014-01-01

Allomorph distribution and granule structure of lotus rhizome C-type starch during gelatinization.

Canhui Cai, Jinwen Cai, Jianmin Man, Yang Yang, Zhifeng Wang, Cunxu Wei

Index: Food Chem. 142 , 408-15, (2014)

Full Text: HTML

Abstract

The allomorph distribution and granule structure of C-type starch from lotus rhizomes were investigated using a combination of techniques during gelatinization. The disruption of crystallinity during gelatinization began from the end distant from the eccentric hilum and then propagated into the center of granule. The periphery of hilum end was finally gelatinized, accompanied by high swelling. The crystallinity changed from C-type to A-type via CA-type during gelatinization, and finally became amorphous structure. The amylose content, crystal degree, helix content, ratio of 1045/1022cm(-1), and peak intensity of crystalline lamellae of gelatinizing starch significantly decreased after 70°C. The amorphous content and ratio of 1022/995cm(-1) increased after 70°C. This study elucidated that B-type allomorph was mainly arranged in the distal region of eccentric hilum, A-type allomorph was mainly located in the periphery of hilum end, and the center of granule was a mixed distribution of A- and B-type allomorphs. Copyright © 2013 Elsevier Ltd. All rights reserved.


Related Compounds

Related Articles:

Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2.

2015-07-03

[J. Biol. Chem. 290 , 16723-43, (2015)]

Fluorometric immunocapture assay for the specific measurement of matrix metalloproteinase-9 activity in biological samples: application to brain and plasma from rats with ischemic stroke.

2013-01-01

[Mol. Brain 6 , 14, (2013)]

Relating the variation of secondary structure of gelatin at fish oil-water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability.

2014-01-15

[Food Chem. 143 , 484-91, (2014)]

Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method.

2013-10-01

[Mater. Sci. Eng. C. Mater. Biol. Appl. 33(7) , 3958-67, (2013)]

In vitro growth of bioactive nanostructured apatites via agar-gelatin hybrid hydrogel.

2013-12-01

[J. Biomed. Nanotechnol. 9(12) , 1972-83, (2013)]

More Articles...