Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells.
Mei-Lang Kung, Shu-Ling Hsieh, Chih-Chung Wu, Tian-Huei Chu, Yu-Chun Lin, Bi-Wen Yeh, Shuchen Hsieh
Index: Nanoscale 7(5) , 1820-9, (2015)
Full Text: HTML
Abstract
Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml(-1) and 85 μg ml(-1), respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ∼0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.
Related Compounds
Related Articles:
2014-10-17
[Int. J. Food Microbiol. 189 , 98-105, (2014)]
2014-01-01
[PLoS ONE 9(6) , e99421, (2014)]
2014-04-01
[Pharmacogn. Mag. 10(Suppl 2) , S383-91, (2014)]
Glucose recognition proteins for glucose sensing at physiological concentrations and temperatures.
2014-07-18
[ACS Chem. Biol. 9(7) , 1595-602, (2014)]
Reservoirs of listeria species in three environmental ecosystems.
2014-09-01
[Appl. Environ. Microbiol. 80(18) , 5583-92, (2014)]