Increased Histone Deacetylase Activity Involved in the Suppressed Invasion of Cancer Cells Survived from ALA-Mediated Photodynamic Treatment.
Pei-Tzu Li, Yi-Jane Tsai, Ming-Jen Lee, Chin-Tin Chen
Index: Int. J. Mol. Sci. 16 , 23994-4010, (2015)
Full Text: HTML
Abstract
Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ⁰ cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation.
Related Compounds
Related Articles:
2014-10-17
[Int. J. Food Microbiol. 189 , 98-105, (2014)]
2014-01-01
[PLoS ONE 9(6) , e99421, (2014)]
2014-04-01
[Pharmacogn. Mag. 10(Suppl 2) , S383-91, (2014)]
Glucose recognition proteins for glucose sensing at physiological concentrations and temperatures.
2014-07-18
[ACS Chem. Biol. 9(7) , 1595-602, (2014)]
Reservoirs of listeria species in three environmental ecosystems.
2014-09-01
[Appl. Environ. Microbiol. 80(18) , 5583-92, (2014)]