miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18.
Seunghee Lee, Kyung-Rok Yu, Young-Sil Ryu, Young Sun Oh, In-Sun Hong, Hyung-Sik Kim, Jin Young Lee, Sunghoon Kim, Kwang-Won Seo, Kyung-Sun Kang
Index: Age (Dordr.) 36(6) , 9724, (2014)
Full Text: HTML
Abstract
Previously, AIMP3 (aminoacyl-tRNAsynthetase-interacting multifunctional protein-3) was shown to be involved in the macromolecular tRNA synthetase complex or to act as a tumor suppressor. In this study, we report a novel role of AIMP3/p18 in the cellular aging of human mesenchymal stem cells (hMSCs). We found that AIMP3/p18 expression significantly increased in senescent hMSCs and in aged mouse bone marrow-derived MSCs (mBM-MSCs). AIMP3/p18 overexpression is sufficient to induce the cellular senescence phenotypes with compromised clonogenicity and adipogenic differentiation potential. To identify the upstream regulators of AIMP3/p18 during senescence, we screened for potential epigenetic regulators and for miRNAs. We found that the levels of miR-543 and miR-590-3p significantly decreased under senescence-inducing conditions, whereas the AIMP3/p18 protein levels increased. We demonstrate for the first time that miR-543 and miR-590-3p are able to decrease AIMP3/p18 expression levels through direct binding to the AIMP/p18 transcripts, which further compromised the induction of the senescence phenotype. Taken together, our data demonstrate that AIMP3/p18 regulates cellular aging in hMSCs possibly through miR-543 and miR-590-3p.
Related Compounds
Related Articles:
2014-10-17
[Int. J. Food Microbiol. 189 , 98-105, (2014)]
2014-01-01
[PLoS ONE 9(6) , e99421, (2014)]
2014-04-01
[Pharmacogn. Mag. 10(Suppl 2) , S383-91, (2014)]
Glucose recognition proteins for glucose sensing at physiological concentrations and temperatures.
2014-07-18
[ACS Chem. Biol. 9(7) , 1595-602, (2014)]
Reservoirs of listeria species in three environmental ecosystems.
2014-09-01
[Appl. Environ. Microbiol. 80(18) , 5583-92, (2014)]