Tunable Fabrication of Molybdenum Disulfide Quantum Dots for Intracellular MicroRNA Detection and Multiphoton Bioimaging.
Wenhao Dai, Haifeng Dong, Bunshi Fugetsu, Yu Cao, Huiting Lu, Xinlei Ma, Xueji Zhang
Index: Small 11 , 4158-64, (2015)
Full Text: HTML
Abstract
Molybdenum disulfide (MoS2 ) quantum dots (QDs) (size <10 nm) possess attractive new properties due to the quantum confinement and edge effects as graphene QDs. However, the synthesis and application of MoS2 QDs has not been investigated in great detail. Here, a facile and efficient approach for synthesis of controllable-size MoS2 QDs with excellent photoluminescence (PL) by using a sulfuric acid-assisted ultrasonic route is developed for this investigation. Various MoS2 structures including monolayer MoS2 flake, nanoporous MoS2 , and MoS2 QDs can be yielded by simply controlling the ultrasonic durations. Comprehensive microscopic and spectroscopic tools demonstrate that the MoS2 QDs have uniform lateral size and possess excellent excitation-independent blue PL. The as-generated MoS2 QDs show high quantum yield of 9.65%, long fluorescence lifetime of 4.66 ns, and good fluorescent stability over broad pH values from 4 to 10. Given the good intrinsic optical properties and large surface area combined with excellent physiological stability and biocompatibility, a MoS2 QDs-based intracellular microRNA imaging analysis system is successfully constructed. Importantly, the MoS2 QDs show good performance as multiphoton bioimaging labeling. The proposed synthesis strategy paves a new way for facile and efficient preparing MoS2 QDs with tunable-size for biomedical imaging and optoelectronic devices application. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related Compounds
Related Articles:
2015-01-03
[Vaccine 33(2) , 346-53, (2014)]
2014-01-01
[BMC Biotechnol. 14 , 962, (2015)]
Process development for scum to biodiesel conversion.
2015-06-01
[Bioresour. Technol. 185 , 185-93, (2015)]
2015-06-01
[Bioresour. Technol. 185 , 49-55, (2015)]
Investigation of the interactions between the EphB2 receptor and SNEW peptide variants.
2014-12-01
[Growth Factors 32(6) , 236-46, (2014)]