Evaluation of polycaprolactone matrices for sustained vaginal delivery of nevirapine in the prevention of heterosexual HIV transmission.
Nhung Dang, Haran Sivakumaran, David Harrich, P Nicholas Shaw, Allan G A Coombes
Index: J. Pharm. Sci. 103(7) , 2107-15, (2014)
Full Text: HTML
Abstract
Nevirapine (NVP) was loaded in polycaprolactone (PCL) matrices to produce vaginal inserts with the aim of preventing HIV transmission. NVP dispersions in PCL were prepared, at 10% (w/w) theoretical loading, measured with respect to the PCL content of the matrices, in the form of (1) NVP only, (2) a physical mixture of NVP with polyethylene glycol (PEG) 6000 or (c) a solid dispersion (SD) with PEG produced by co-dissolution in ethanol. Characterisation of SD by differential scanning calorimetry and attenuated total reflectance-Fourier transform infrared spectroscopy suggested transformation of the crystalline structure of NVP to an amorphous form which consequently increased the dissolution rate of drug. A low-loading efficiency of 13% was obtained for NVP-loaded matrices and less than 20% for matrices prepared using physical mixtures of drug and PEG. The loading efficiency was improved significantly to around 40% when a 1:4 NVP-PEG SD was used for matrix production. After 30 days, 40% of the drug content was released from NVP-loaded matrices, 55% from matrices containing 1:4 NVP-PEG physical mixtures and 60% from matrices loaded with 1:4 NVP-PEG SDs. The in vitro anti-viral activity of released NVP was assessed using a luciferase reporter gene assay following the infection of HeLa cells with pseudo-typed HIV-1. NVP released from PCL matrices in simulated vaginal fluid retained over 75% anti-HIV activity compared with the non-formulated NVP control. In conclusion, 1:4 NVP-PEG SDs when loaded in PCL matrices increase drug loading efficiency and improve release behaviour.© 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Related Compounds
Related Articles:
2014-08-01
[Mol. Plant 7(8) , 1365-83, (2014)]
2014-06-02
[J. Exp. Med. 211(6) , 1079-91, (2014)]
2012-07-01
[Int. J. Obes. 38(12) , 1538-44, (2014)]
2014-01-01
[PLoS Biol. 12(1) , e1001758, (2014)]
Mechanism of human PTEN localization revealed by heterologous expression in Dictyostelium.
2014-12-11
[Oncogene 33(50) , 5688-96, (2014)]