Analyst 2018-04-09

Mechanism and regularity for quenching effect of bases on fluorophore: The base-quenched probe method

Huihui Mao, Guanghua Luo, Yuxia Zhan, Jun Zhang, Shuang Yao, Yang Yu

Index: 10.1039/C8AN00116B

Full Text: HTML

Abstract

The base-quenched probe method for detecting Single nucleotide polymorphisms (SNPs) relies on real-time PCR and melting-curve analysis, which might require only one pair of primers and one probe. At present, it has been successfully applied to detect SNPs of multiple genes. However, the mechanism of the base-quenched probe method remains unclear. Therefore, we investigated the possible mechanism of fluorescence quenching by DNA bases in aqueous solution using spectroscopic techniques. It showed that the possible mechanism might be photo-induced electron transfer. We next analyzed electron transfer or transmission between DNA bases and fluorophores. The data suggested that in single-stranded DNA, the electrons of the fluorophore are transferred to the orbit of pyrimidine bases (thymine (T) and cytosine (C)), or that the electron orbits of the fluorophore are occupied by electrons from purine bases (guanine (G) and adenine (A)), which lead to fluorescence quenching. In addition, the electrons of a fluorophore excited by light can be transmitted along double-stranded DNA, which gives rise to stronger fluorescence quenching. Further, we demonstrated that the quenching efficiency of bases is in the order of G > C ≥ A ≥ T and the capability of electron transmission of base-pairs in double-stranded DNA is in the order of CG ≥ GC > TA ≥ AT (letters representing bases on the complementary strand of the probe are bold and underlined), and the most common commercial fluorophores including FAM, HEX, TET, JOE, and TAMARA could be influenced by bases and are in line with this mechanism and regularity.

Latest Articles:

Self-assembly two-dimensional gold nanoparticles film for sensitive analysis nontargeted of food additives with Surface-enhanced Raman spectroscopy

2018-04-11

[10.1039/C8AN00540K]

In-vitro and ex-vivo measurements of biophysical properties of blood by using microfluidic platforms and animal models

2018-04-11

[10.1039/C8AN00231B]

Dependence of cell adhesion on extracellular matrix materials formed on pore bridge boundaries by nanopore opening and closing geometry

2018-04-11

[10.1039/C8AN00429C]

One-step isothermal detection of multiple KRAS mutations by forming SNP specific hairpins on a gold nanoshell

2018-04-11

[10.1039/C8AN00525G]

Simple preparation and highly selective detection of silver ions using an electrochemical sensor based on sulfur-doped graphene and a 3,3′,5,5′-tetramethylbenzidine composite modified electrode

2018-04-10

[10.1039/C7AN02084H]

More Articles...