Analyst 2018-04-11

Dependence of cell adhesion on extracellular matrix materials formed on pore bridge boundaries by nanopore opening and closing geometry

Sueon Kim, Dong Yeol Han, Zhenzhong Chen, Won Gu Lee

Index: 10.1039/C8AN00429C

Full Text: HTML

Abstract

In this study, we report experimental results for characterization of the growth and formation of pore bridge materials that modified the adhesion structures of cells cultured on nanomembranes with opening and closing geometry. To perform the proof-of-concept experiments, we fabricated two types of anodized alumina oxide substrates with single-sided opening (i.e., one side open, but closed at the other side) and double-sided opening (i.e., both sides open). In our experiment, we compared the densities of pores formed and of bridge materials which differently act as connective proteins depending on the size of pores. The results show that the pore opening geometry can be used to promote the net contact force between pores, resulting in the growth and formation of pore bridge materials before and after cell culture. The results also imply that the bridge materials can be used to attract the structural protrusion of filopodia that can promote the adhesion of cell-to-cell and cell-to-pore bridge. It is observed that the shape and size of cellular structures of filopodia depend on the presence of pore bridge materials. Overall, this observation brought us a significant clue that cells cultured on nanopore substrates would change the adhesion property depending on not only the formation of nanopores formed on the surface of topological substrates, but also that of pore bridge materials by its morphological growth.

Latest Articles:

Self-assembly two-dimensional gold nanoparticles film for sensitive analysis nontargeted of food additives with Surface-enhanced Raman spectroscopy

2018-04-11

[10.1039/C8AN00540K]

In-vitro and ex-vivo measurements of biophysical properties of blood by using microfluidic platforms and animal models

2018-04-11

[10.1039/C8AN00231B]

One-step isothermal detection of multiple KRAS mutations by forming SNP specific hairpins on a gold nanoshell

2018-04-11

[10.1039/C8AN00525G]

Simple preparation and highly selective detection of silver ions using an electrochemical sensor based on sulfur-doped graphene and a 3,3′,5,5′-tetramethylbenzidine composite modified electrode

2018-04-10

[10.1039/C7AN02084H]

A Facile Graphene Oxide-Based Fluorescent Nanosensor for in Situ “Turn-on” Detection of Telomerase Activity

2018-04-10

[10.1039/C8AN00402A]

More Articles...