Sensitivity-Tunable Colorimetric Detection of Chloropicrin Vapor on Nylon-6 Nanofibrous Membrane Based on a Detoxification Reaction with Biological Thiols
Peixin Tang, Ho Ting Leung, Maria Trinidad Gomez, Gang Sun
Index: 10.1021/acssensors.8b00135
Full Text: HTML
Abstract
Detoxification reaction of chloropicrin in the human body with biological thiols was selected for detection of chloropicrin in the air. The consumption of free sulfhydryl group in biological thiols by chloropicrin is colorimetrically detectable with the addition of the Ellman’s reagent. In this study, glutathione, N-acetyl-l-cysteine, l-homocysteine, cysteamine, and thioglycolic acid were tested as sensing agents for chloropicrin vapor detection in ppb concentration range. The reactivity of the selected biological thiols was investigated based on both their redox properties and the nucleophilic strength of the sulfhydryl groups. Nylon-6 nanofibrous membrane and an organic solvent were used as a sensor matrix and a vapor sorbent, respectively, to provide solid supports with ultrahigh surface area and enhanced adsorption to chloropicrin vapor. The tunable sensitivity and detection range by using different biological thiols was achieved on the sensors due to the different reactivity of thiols toward chloropicrin.
Latest Articles:
Modified Organosilica Core–Shell Nanoparticles for Stable pH Sensing in Biological Solutions
2018-04-19
[10.1021/acssensors.8b00034]
2018-04-17
[10.1021/acssensors.8b00021]
Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit
2018-04-11
[10.1021/acssensors.8b00006]
Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure
2018-04-09
[10.1021/acssensors.8b00167]
2018-04-02
[10.1021/acssensors.8b00051]