ACS Sensors 2018-04-02

Disposable MoS2-Arrayed MALDI MS Chip for High-Throughput and Rapid Quantification of Sulfonamides in Multiple Real Samples

Yaju Zhao, Minmin Tang, Qiaobo Liao, Zhoumin Li, Hui Li, Kai Xi, Li Tan, Mei Zhang, Danke Xu, Hong-Yuan Chen

Index: 10.1021/acssensors.8b00051

Full Text: HTML

Abstract

In this work, we demonstrate, for the first time, the development of a disposable MoS2-arrayed matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) chip combined with an immunoaffinity enrichment method for high-throughput, rapid, and simultaneous quantitation of multiple sulfonamides (SAs). The disposable MALDI MS chip was designed and fabricated by MoS2 array formation on a commercial indium tin oxide (ITO) glass slide. A series of SAs were analyzed, and clear deprotonated signals were obtained in negative-ion mode. Compared with MoS2-arrayed commercial steel plate, the prepared MALDI MS chip exhibited comparable LDI efficiency, providing a good alternative and disposable substrate for MALDI MS analysis. Furthermore, internal standard (IS) was previously deposited onto the MoS2 array to simplify the experimental process for MALDI MS quantitation. 96 sample spots could be analyzed within 10 min in one single chip to perform quantitative analysis, recovery studies, and real foodstuff detection. Upon targeted extraction and enrichment by antibody conjugated magnetic beads, five SAs were quantitatively determined by the IS-first method with the linear range of 0.5–10 ng/mL (R2 > 0.990). Good recoveries and repeatability were obtained for spiked pork, egg, and milk samples. SAs in several real foodstuffs were successfully identified and quantified. The developed method may provide a promising tool for the routine analysis of antibiotic residues in real samples.

Latest Articles:

Modified Organosilica Core–Shell Nanoparticles for Stable pH Sensing in Biological Solutions

2018-04-19

[10.1021/acssensors.8b00034]

Rationally Designed Sensing Selectivity and Sensitivity of an Aerolysin Nanopore via Site-Directed Mutagenesis

2018-04-17

[10.1021/acssensors.8b00021]

Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit

2018-04-11

[10.1021/acssensors.8b00006]

Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure

2018-04-09

[10.1021/acssensors.8b00167]

Sensitivity-Tunable Colorimetric Detection of Chloropicrin Vapor on Nylon-6 Nanofibrous Membrane Based on a Detoxification Reaction with Biological Thiols

2018-04-04

[10.1021/acssensors.8b00135]

More Articles...