Analyst 2018-03-15

Automated flow injection method for the high precision determination of drift tube ion mobility collision cross sections

Charles M. Nichols, Jody C. May, Stacy D. Sherrod, John A. McLean

Index: 10.1039/C8AN00056E

Full Text: HTML

Abstract

The field of ion mobility-based omics studies requires high-quality collision cross section (CCS) libraries to effectively utilize CCS as a molecular descriptor. Absolute CCS values with the highest precision are obtained on drift tube instruments by measuring the drift time of ions at multiple drift voltages, commonly referred to as a ‘stepped field’ experiment. However, generating large scale absolute CCS libraries from drift tube instruments is time consuming due to the current lack of high-throughput methods. This communication reports a fully automated stepped-field method to acquire absolute CCS on commercially available equipment. Using a drift tube ion mobility-mass spectrometer (DTIM-MS) coupled to a minimally modified liquid chromatography (LC) system, CCS values can be measured online with a carefully timed flow injection analysis (FIA) experiment. Results demonstrate that the FIA stepped-field method yields CCS values which are of high analytical precision (<0.4% relative standard deviation, RSD) and accuracy (≤0.4% difference) comparable to CCS values obtained using traditional direct-infusion stepped-field experiments. This high-throughput CCS method consumes very little sample volume (20 μL) and will expedite the generation of large-scale CCS libraries to support molecular identification within global untargeted studies.

Latest Articles:

Self-assembly two-dimensional gold nanoparticles film for sensitive analysis nontargeted of food additives with Surface-enhanced Raman spectroscopy

2018-04-11

[10.1039/C8AN00540K]

In-vitro and ex-vivo measurements of biophysical properties of blood by using microfluidic platforms and animal models

2018-04-11

[10.1039/C8AN00231B]

Dependence of cell adhesion on extracellular matrix materials formed on pore bridge boundaries by nanopore opening and closing geometry

2018-04-11

[10.1039/C8AN00429C]

One-step isothermal detection of multiple KRAS mutations by forming SNP specific hairpins on a gold nanoshell

2018-04-11

[10.1039/C8AN00525G]

Simple preparation and highly selective detection of silver ions using an electrochemical sensor based on sulfur-doped graphene and a 3,3′,5,5′-tetramethylbenzidine composite modified electrode

2018-04-10

[10.1039/C7AN02084H]

More Articles...