Nano Letters 2018-04-12

Seeing Multiexcitons through Sample Inhomogeneity: Band-Edge Biexciton Structure in CdSe Nanocrystals Revealed by Two-Dimensional Electronic Spectroscopy

Hélène Seiler, Samuel Palato, Colin Sonnichsen, Harry Baker, Patanjali Kambhampati

Index: 10.1021/acs.nanolett.8b00470

Full Text: HTML

Abstract

The electronic structure of multiexcitons significantly impacts the performance of nanostructures in lasing and light-emitting applications. However, these multiexcitons remain poorly understood due to their complexity arising from many-body physics. Standard transient-absorption and photoluminescence spectroscopies are unable to unambiguously distinguish effects of sample inhomogeneity from exciton–biexciton interactions. Here, we exploit the energy and time resolution of two-dimensional electronic spectroscopy to access the electronic structure of the band-edge biexciton in colloidal CdSe quantum dots. By removing effects of inhomogeneities, we show that the band-edge biexciton structure must consist of a discrete manifold of electronic states. Furthermore, the biexciton states within the manifold feature distinctive binding energies. Our findings have direct implications for optical gain thresholds and efficiency droop in light-emitting devices and provide experimental measures of many-body physics in nanostructures.

Latest Articles:

Catalytic Nanotruss Structures Realized by Magnetic Self-Assembly in Pulsed Plasma

2018-04-16

[10.1021/acs.nanolett.8b00718]

Plasmonic Glasses and Films Based on Alternative Inexpensive Materials for Blocking Infrared Radiation

2018-04-16

[10.1021/acs.nanolett.8b00764]

Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries

2018-04-13

[10.1021/acs.nanolett.8b00534]

Electrical Transport Signature of the Magnetic Fluctuation-Structure Relation in α-RuCl3 Nanoflakes

2018-04-12

[10.1021/acs.nanolett.8b00926]

Observation of Quasi-Two-Dimensional Polar Domains and Ferroelastic Switching in a Metal, Ca3Ru2O7

2018-04-12

[10.1021/acs.nanolett.8b00633]

More Articles...