Nano Letters 2018-04-16

Plasmonic Glasses and Films Based on Alternative Inexpensive Materials for Blocking Infrared Radiation

Lucas V. Besteiro, Xiang-Tian Kong, Zhiming Wang, Federico Rosei, Alexander O. Govorov

Index: 10.1021/acs.nanolett.8b00764

Full Text: HTML

Abstract

The need for energy-saving materials is pressing. This Letter reports on the design of energy-saving glasses and films based on plasmonic nanocrystals that efficiently block infrared radiation. Designing such plasmonic composite glasses is nontrivial and requires taking full advantage of both material and geometrical properties of the nanoparticles. We compute the performance of solar plasmonic glasses incorporating a transparent matrix and specially shaped nanocrystals. This performance depends on the shape and material of such nanocrystals. Glasses designed with plasmonic nanoshells are shown to exhibit overall better performances as compared to nanorods and nanocups. Simultaneously, scalable synthesis of plasmonic nanoshells and nanocups is technologically feasible using gas-phase fabrication methods. The computational simulations were performed for noble metals (gold and silver) as well as for alternative plasmonic materials (aluminum, copper, and titanium nitride). Inexpensive plasmonic materials (silver, copper, aluminum, and titanium nitride) show an overall good performance in terms of the commonly used figures of merit of industrial glass windows. Together with numerical data for specific materials, this study includes a set of general rules for designing efficient plasmonic IR-blocking media. The plasmonic glasses proposed herein are good candidates for the creation of cheap optical media, to be used in energy-saving windows in warm climates’ housing or temperature-sensitive infrastructure.

Latest Articles:

Catalytic Nanotruss Structures Realized by Magnetic Self-Assembly in Pulsed Plasma

2018-04-16

[10.1021/acs.nanolett.8b00718]

Direct Visualization of Thermal Conductivity Suppression Due to Enhanced Phonon Scattering Near Individual Grain Boundaries

2018-04-13

[10.1021/acs.nanolett.8b00534]

Electrical Transport Signature of the Magnetic Fluctuation-Structure Relation in α-RuCl3 Nanoflakes

2018-04-12

[10.1021/acs.nanolett.8b00926]

Observation of Quasi-Two-Dimensional Polar Domains and Ferroelastic Switching in a Metal, Ca3Ru2O7

2018-04-12

[10.1021/acs.nanolett.8b00633]

Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes

2018-04-12

[10.1021/acs.nanolett.8b00648]

More Articles...